Abstract
The existing approaches to the discrete-time nonlinear output regulation problem rely on the offline solution of a set of mixed nonlinear functional equations known as discrete regulator equations. For complex nonlinear systems, it is difficult to solve the discrete regulator equations even approximately. Moreover, for systems with uncertainty, these approaches cannot offer a reliable solution. By combining the approximation capability of the feedforward neural networks (NNs) with an online parameter optimization mechanism, we develop an approach to solving the discrete nonlinear output regulation problem without solving the discrete regulator equations explicitly. The approach of this paper can be viewed as a discrete counterpart of our previous paper on approximately solving the continuous-time nonlinear output regulation problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.