Abstract

To analyse events following transplantation of stem cells in the brain robust tools for tracing stem cells are required. Here we took advantage of the mouse strain B6.Cg-Tg(Thy1-YFP)16Jrs/J (Thy1 YFP-16), where yellow fluorescent protein (YFP) is under control of the promoter of Thy1 gene. This allows visualising whole neurons, i.e. their cell body, axons and dendrites. In this work fluorescent cells were followed during embryonic development, in vitro differentiation, and after transplantation in the healthy and stroke-affected mouse brain. During embryonic development Thy1-YFP positive cells were first observed on E12.5 and subsequently located in the prosencephalon, rhombencephalon, spinal cord and peripheral nerves. Quantitative analysis by RT-PCR and immunocytochemistry revealed that Thy1-YFP positive cells during embryo development and in vitro differentiation were expressing nestin and SOX2 then MAP2, β3-tubulin and NeuN. Thy1-YFP positive cells isolated from E14.5 represented 21.88±053% (SD) of the cultivated neurons and this remained constant along in vitro differentiation. On the other hand, proportion of Thy1-YFP positive cells reached 50% of neurons in perinatal and one month old mouse brain. Neural stem cells isolated from Thy1 YFP-16 mouse strain transplanted near hippocampus of the healthy and stroke-affected brain were distinguishable by YFP fluorescence. They differentiated into mature neurons and were detectable even 14 weeks after transplantation, the end point of our experiment. In conclusion, stem cells originating from Thy1 YFP-16 mice represent an outstanding tool to monitor neurogenesis enabling morphological analyses of new neurons and their projections, in particular after transplantation in the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.