Abstract

Objective. Respiratory motion tracking techniques can provide optimal treatment accuracy for thoracoabdominal radiotherapy and robotic surgery. However, conventional imaging-based respiratory motion tracking techniques are time-lagged owing to the system latency of medical linear accelerators and surgical robots. This study aims to investigate the precursor time of respiratory-related neural signals and analyze the potential of neural signals-based respiratory motion tracking. Approach. The neural signals and respiratory motion from eighteen healthy volunteers were acquired simultaneously using a 256-channel scalp electroencephalography (EEG) system. The neural signals were preprocessed using the MNE python package to extract respiratory-related EEG neural signals. Cross-correlation analysis was performed to assess the precursor time and cross-correlation coefficient between respiratory-related EEG neural signals and respiratory motion. Main results. Respiratory-related neural signals that precede the emergence of respiratory motion are detectable via non-invasive EEG. On average, the precursor time of respiratory-related EEG neural signals was 0.68 s. The representative cross-correlation coefficients between EEG neural signals and respiratory motion of the eighteen healthy subjects varied from 0.22 to 0.87. Significance. Our findings suggest that neural signals have the potential to compensate for the system latency of medical linear accelerators and surgical robots. This indicates that neural signals-based respiratory motion tracking is a potential promising solution to respiratory motion and could be useful in thoracoabdominal radiotherapy and robotic surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.