Abstract

Cognitive modeling of tool wear progress is employed to obtain a dependable trend of tool wear curves for optimal utilization of tool life and productivity improvement, while preserving the surface integrity of the ground parts. This paper describes a method to characterize the dresser wear condition utilizing vibration signals by applying a cognitive paradigm, such as Artificial Neural Networks (ANNs). Dressing tests with a single-point dresser were performed in a surface grinding machine and tool wear measurements taken along the experiments. The results show that ANN processing offers an effective method for the monitoring of grinding wheel wear based on vibration signal analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.