Abstract
Fault detection and diagnosis is an important problem in process automation. Both model-based methods and expert systems have been suggested to solve the problem, along with the pattern recognition approach. A number of possible neural network architectures for fault diagnosis are studied. The multilayer perceptron network with a hyperbolic tangent as the nonlinear element seems best suited for the task. As a test case, a realistic heat exchanger-continuous stirred tank reactor system is studied. The system has 14 noisy measurements and 10 faults. The proposed neural network was able to learn the faults in under 3000 training cycles and then to detect and classify the faults correctly. Principal component analysis is used to illustrate the fault diagnosis problem in question.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.