Abstract

Time-varying passenger flow is the input data in the optimization design of intercity high-speed railway transportation products, and it plays an important role. Therefore, it is necessary to predict the origin-destination (O-D) passenger flow at different times of the day in combination with the stable time-varying characteristics. In this paper, three neural network-based hybrid forecasting models are designed and compared, named Variational Mode Decomposition-Multilayer Perceptron (VMD-MLP), Variational Mode Decomposition-Gated Recurrent Unit Neural Network (VMD-GRU), and Variational Mode Decomposition-Bidirectional Long Short-Term Memory Neural Network (VMD-Bi-LSTM). First, the time-varying characteristics of passenger travel demand under different time granularities are analyzed and extracted by the VMD method. Second, three neural network prediction models are constructed to predict the passenger flow sequence after VMD decomposition and reconstruction. Experimental analysis is performed on the Guangzhou Zhuhai intercity high-speed railway in China, and the passenger flow at different time periods of the day under different time granularities is predicted. The following results were found: (i) The number of hidden neurons and the number of iterations of the hybrid forecasting model have a great impact on the prediction accuracy. The error of the VMD-MLP model fluctuates less and it performs more smoothly than both the VMD-GRU model and the VMD-Bi-LSTM model. (ii) The VMD-MLP, VMD-GRU, and VMD-Bi-LSTM models can basically reduce the MAPE error to less than 10%. With the increase of time granularity, RMSE and MAE errors tend to gradually increase, while the MAPE error tends to gradually decrease. (iii) For passenger flow under a smaller time granularity, the prediction accuracy of the VMD-MLP model is higher, while for passenger flow under a larger time granularity, the prediction accuracy of the VMD-GRU and VMD-Bi-LSTM models is higher. (iv) The proposed neural network-based hybrid models outperform the existing models and the hybrid models perform better than the single models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.