Abstract

The emerging optical/wireless topology reconfiguration technologies have shown great potential in improving the performance of data center networks. However, it also poses a big challenge on how to find the best topology configurations to support the dynamic traffic demands. In this work, we present xWeaver, a traffic-driven deep learning solution to infer the high-performance network topology online. xWeaver supports a powerful network model that enables the topology optimization over different performance metrics and network architectures. With the design of properly-structured neural networks, it can automatically derive the critical traffic patterns from data traces and learn the underlying mapping between the traffic patterns and topology configurations specific to the target data center. After offline training, xWeaver generates the optimized (or near-optimal) topology configuration online, and can also smoothly update its model parameters for new traffic patterns. The experiment results show the significant performance gain of xWeaver in supporting smaller flow completion time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.