Abstract
Abstract: Rapid and nondestructive evaluation of pavement crack depths is a major challenge in pavement maintenance and rehabilitation. This article presents a computer‐based methodology with which one can estimate the actual depths of shallow, surface‐initiated fatigue cracks in asphalt pavements based on rapid measurement of their surface characteristics. It is shown that the complex overall relationship among crack depths, surface geometrical properties of cracks, pavement properties, and traffic characteristics can be learnt effectively by a neural network (NN). The learning task is facilitated by a database that includes relevant traffic and pavement characteristics of Florida's state highway network. In addition, the specific data used for the NN model development also contained laser‐scanned microscopic surface geometrical properties of cracks in 95 pavement sections and pavement core samples scattered within five counties of Florida. Relatively advanced training algorithms were investigated in addition to the Standard Backpropagation algorithm to determine the optimal NN architecture. In terms of optimizing the NN training process, the “early stopping method” was found to be effective. The crack depth evaluation model was validated based on an unused portion of the database and fresh core samples. The results indicate the promise of NN usage in nondestructive estimation of shallow crack depths based on crack‐surface geometry and pavement and traffic characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer-Aided Civil and Infrastructure Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.