Abstract
Abstract In this paper, an artificial neural network (ANN)-based transfer learning approach of inverse displacement analysis of robot manipulators is studied. ANNs with different structures are applied utilizing data from different end-effector paths of a manipulator for training purposes. Four transfer learning methods are proposed by applying pretrained initial parameters. Final training results of ANN with transfer learning are compared with those of ANN with random initialization. To investigate the rate of convergence of data fitting comprehensively, different values of performance targets are defined. The computing epochs and performance measures are compared. It is presented that, depending on the structure of ANN, the proposed transfer learning methods can accelerate the training process and achieve higher accuracy. Depending on the method, the transfer learning improves the performance differently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.