Abstract

ABSTRACT A deep learning model is developed for the Next Generation Attenuation – Subduction database for predicting spectral accelerations and peak amplitude measures. The developed model satisfies the statistical criteria necessary for prediction. Standard deviations lie in 0.2864–0.3809, 0–0.2696, and 0.4514–0.7892, range for inter-event, -region, and intra-events, respectively. Transfer learning is applied to the New Zealand region. Probabilistic seismic hazard analysis is performed for the Andaman-Nicobar region and obtained a peak ground acceleration of 0.6–0.7 g and 0.4–0.5 g at the Andaman and the Nicobar Islands, respectively, for a 2475-year return period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.