Abstract

In this paper, neural network-based nonlinear dynamical control of kinematically redundant robot manipulators is considered. The neural network-based controller achieves end-effector trajectory tracking as well as subtask tracking effectively. A feedforward neural network is employed to learn the parametric uncertainties, existing in the dynamical model of the robot manipulator. The whole system is shown to be stable in the sense of Lyapunov. Numerical simulation studies are carried out for a 3R planar robot manipulator to show the effectiveness of the control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.