Abstract

The goal of image chromatic adaptation is to remove the effect of illumination and to obtain color data that reflects precisely the physical contents of the scene. We present in this paper an approach to image chromatic adaptation using Neural Networks (NN) with application for detecting--adapting human skin color. The NN is trained on randomly chosen color images containing human subject under various illuminating conditions, thereby enabling the model to dynamically adapt to the changing illumination conditions. The proposed network predicts directly the illuminant estimate in the image so as to adapt to human skin color. The comparison of our method with Gray World, White Patch and NN on White Patch methods for skin color stabilization is presented. The skin regions in the NN stabilized images are successfully detected using a computationally inexpensive thresholding operation. We also present results on detecting skin regions on a data set of test images. The results are promising and suggest a new approach for adapting human skin color using neural networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.