Abstract

Tapping in time to a metronome beat (hereafter beat synchronization) shows considerable variability in child populations, and individual differences in beat synchronization are reliably related to reading development. Children with developmental dyslexia show impairments in beat synchronization. These impairments may reflect deficiencies in auditory perception of the beat which in turn affect auditory-motor mapping, or may reflect an independent motor deficit. Here, we used a new methodology in EEG based on measuring beat-related steady-state evoked potentials (SS-EPs, Nozaradan et al., 2015) in an attempt to disentangle neural sensory and motor contributions to behavioral beat synchronization in children with dyslexia. Children tapped with both their left and right hands to every second beat of a metronome pulse delivered at 2.4 Hz, or listened passively to the beat. Analyses of preferred phase in EEG showed that the children with dyslexia had a significantly different preferred phase compared to control children in all conditions. Regarding SS-EPs, the groups differed significantly for the passive Auditory listening condition at 2.4 Hz, and showed a trend toward a difference in the Right hand tapping condition at 3.6 Hz (sensorimotor integration measure). The data suggest that neural rhythmic entrainment is atypical in children with dyslexia for both an auditory beat and during sensorimotor coupling (tapping). The data are relevant to a growing literature suggesting that rhythm-based interventions may help language processing in children with developmental disorders of language learning.

Highlights

  • Sensorimotor synchronization refers to the rhythmic co-ordination of perception and action (Repp, 2005; Repp and Su, 2013), and is most often studied using finger tapping to a rhythmic sequence of auditory stimuli

  • The Watson-Williams test revealed a significant difference in phase between the DYS and CA group—that is, the phase difference between the EEG signal and the 2.4 Hz sinusoid was different between the DYS and CA group—F(1, 22) = 7.039, p = 0.015

  • Following Nozaradan et al (2015), a follow-up exploratory analysis was conducted on the 2.4 Hz SS-EP where we restricted data analyses to a subset of frontal electrodes that contained the most power in the 2.4 Hz band

Read more

Summary

Introduction

Sensorimotor synchronization refers to the rhythmic co-ordination of perception and action (Repp, 2005; Repp and Su, 2013), and is most often studied using finger tapping to a rhythmic sequence of auditory stimuli. Such rhythmic tapping is hereafter referred to as beat synchronization. Beat Synchronization in Dyslexia to individual differences in progress in reading (e.g., Dellatolas et al, 2009 [French]; Corriveau and Goswami, 2009 [English]; Flaugnacco et al, 2014 [Italian]). Individual differences in beat synchronization are related to measures of reading readiness (Woodruff Carr et al, 2014, English)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.