Abstract

This paper presents a new methodology from the standpoint of energy propagation for real-time and nonlinear modelling of deformable objects. It formulates the deformation process of a soft object as a process of energy propagation, in which the mechanical load applied to the object to cause deformation is viewed as the equivalent potential energy based on the law of conservation of energy and is further propagated among masses of the object based on the nonlinear Poisson propagation. Poisson propagation of mechanical load in conjunction with non-rigid mechanics of motion is developed to govern the dynamics of soft object deformation. Further, these two governing processes are modelled with cellular neural networks to achieve real-time computational performance. A prototype simulation system with a haptic device is implemented for real-time simulation of deformable objects with haptic feedback. Simulations, experiments as well as comparisons demonstrate that the proposed methodology exhibits nonlinear force–displacement relationship, capable of modelling large-range deformation. It can also accommodate homogeneous, anisotropic and heterogeneous materials by simply changing the constitutive coefficient value of mass points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.