Abstract

When listening to music, people often perceive and move along with a periodic meter. However, the dynamics of mapping between meter perception and the acoustic cues to meter periodicities in the sensory input remain largely unknown. To capture these dynamics, we recorded the electroencephalography while nonmusician and musician participants listened to nonrepeating rhythmic sequences, where acoustic cues to meter frequencies either gradually decreased (from regular to degraded) or increased (from degraded to regular). The results revealed greater neural activity selectively elicited at meter frequencies when the sequence gradually changed from regular to degraded compared with the opposite. Importantly, this effect was unlikely to arise from overall gain, or low-level auditory processing, as revealed by physiological modeling. Moreover, the context effect was more pronounced in nonmusicians, who also demonstrated facilitated sensory-motor synchronization with the meter for sequences that started as regular. In contrast, musicians showed weaker effects of recent context in their neural responses and robust ability to move along with the meter irrespective of stimulus degradation. Together, our results demonstrate that brain activity elicited by rhythm does not only reflect passive tracking of stimulus features, but represents continuous integration of sensory input with recent context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.