Abstract

Internet video streaming has experienced tremendous growth over the last few decades. However, the quality of existing video delivery critically depends on the bandwidth resource. Consequently, user quality of experience (QoE) suffers inevitably when network conditions become unfavorable. We present a new video delivery framework that utilizes client computation and recent advances in deep neural networks (DNNs) to reduce the dependency for delivering high-quality video. The use of DNNs enables us to enhance the video quality independent to the available bandwidth. We design a practical system that addresses several challenges, such as client heterogeneity, interaction with bitrate adaptation, and DNN transfer, in enabling the idea. Our evaluation using 3G and broadband network traces shows the proposed system outperforms the current state of the art, enhancing the average QoE by 43.08% using the same bandwidth budget or saving 17.13% of bandwidth while providing the same user QoE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.