Abstract

Abstract. Due to their widespread and continuous expansion, transportation networks are considerably exposed to natural hazards such as earthquakes, floods, landslides or hurricanes. The vulnerability of specific segments and structures among bridges, tunnels, pumps or storage tanks can translate not only into direct losses but also into significant indirect losses at the systemic level. Cascading effects such as post-event traffic congestion, building debris or tsunamis can contribute to an even greater level of risk. To support the effort of modeling the natural hazards' implications at the full transportation network scale, we developed a new applicable framework, relying on (i) GIS to define, analyze and represent transportation networks; (ii) methods for determining the probability of network segments to fail due to natural-hazard effects; (iii) Monte Carlo simulation for multiple scenario generation; (iv) methods to analyze the implications of connectivity loss on emergency intervention times and transit disruption; and (v) correlations with other vulnerability and risk indicators. Currently, the framework is integrated into ArcGIS Desktop as a toolbox entitled “Network-risk”, which makes use of the ModelBuilder functions and is free to download and modify. Network-risk is an attempt to bring together interdisciplinary research with the goal of creating an automated solution to deliver insights on how a transportation network can be affected by natural hazards, directly and indirectly, assisting in risk evaluation and mitigation planning. In this article we present and test Network-risk at the full urban scale for the road network of Bucharest. This city is one of Europe's most exposed capitals to earthquakes, with high seismic-hazard values and a vulnerable building stock but also significant traffic congestion problems not yet accounted for in risk analyses and risk reduction strategies.

Highlights

  • The complexity and exposure of our society to natural hazards have significantly increased in the last decades (Gu, 2019; Pesaresi et al, 2017; Fleischhauer, 2008) and will continue to do so

  • It can be seen that their distribution is generally satisfactory; there is an area with significantly greater intervention times, reflected by Fig. 5a and b, in the southwest of Bucharest (Rahova and Ferentari neighborhoods) – an area known for its socioeconomic vulnerability (Armas et al, 2016), with no major hospital in proximity

  • In the post-earthquake chaos, especially if the earthquake strikes at rush hour, traffic jams are going to pose a considerable threat to road accessibility; our study reveals some of these effects (Figs. 5–9) and that some areas could be accessed much easier by ambulances from non-central locations

Read more

Summary

Introduction

The complexity and exposure of our society to natural hazards have significantly increased in the last decades (Gu, 2019; Pesaresi et al, 2017; Fleischhauer, 2008) and will continue to do so. Transportation networks are a requirement for almost every inhabited place – residential, commercial or industrial – and they continue to be upgraded per location and expand. As such, they become more and more exposed, if not more vulnerable. In Recent large-scale natural-hazard events, such as earthquakes (Italy in 2016 and 2009, Nepal in 2015, Haiti in 2010, China in 2008, etc.), some accompanied by very destructive tsunamis (Japan in 2011 or Indonesia in 2018 and 2004), hurricanes and typhoons (Mozambique in 2019, Puerto Rico in 2017, Philippines in 2013 and 2012, Myanmar in 2008, or the USA in 2005), or heatwaves (constant in the last years in countries such as the USA, Australia, Greece or Spain), proved that transportation networks are extremely vulnerable and vital immediately after the event occurrence. Contributing to the economic loss balance of such events, transportation networks are more and more significant, especially in developed coun-

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.