Abstract
Unraveling the functional role of neuromodulatory systems has been a major challenge for cognitive neuroscience, giving rise to theories ranging from a simple role in vigilance to complex models concerning decision making, prediction errors or unexpected uncertainty. A new, simplified and overarching theory of noradrenaline function is inspired by an invertebrate model: neuromodulators in crustacea abruptly interrupt activity in neural networks and reorganize the elements into new functional networks determining the behavioral output. Analogously in mammals, phasic activation of noradrenergic neurons of the locus coeruleus in time with cognitive shifts could provoke or facilitate dynamic reorganization of target neural networks, permitting rapid behavioral adaptation to changing environmental imperatives. Detailed analysis and discussion of extensive electrophysiological data from the locus coeruleus of rats and monkeys in controlled behavioral situations is provided here to support this view. This simplified 'new look' at locus coeruleus noradrenaline function redirects the challenge of understanding neuromodulatory systems towards their target networks, particularly to the dynamics of their interactions and how they organize adaptive behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.