Abstract

BackgroundCinnamomum cassia (L.) J.Presl (Cinnamon) was known as a kind of hot herb, improved circulation and warmed the body. However, the active components and mechanisms of dispelling cold remain unknown. MethodsThe effects of several Chinses herbs on thermogenesis were evaluated on body temperature and activation of brown adipose tissue. After confirming the effect, the components of cinnamon were identified using HPLC-Q-TOF/MS and screened with databases. The targets of components were obtained with TCMSP, SymMap, Swiss and STITCH databases. Thermogenesis genes were predicted with DisGeNET and GeneCards databases. The protein-protein interaction network was constructed with Cytoscape 3.7.1 software. GO enrichment analysis was accomplished with STRING databases. KEGG pathway analysis was established with Omicshare tools. The top 20 targets for four compounds were obtained according to the number of edges of PPI network. In addition, the network results were verified with experimental research for the effects of extracts and major compounds. ResultsCinnamon extract significantly upregulated the body temperature during cold exposure.121 components were identified in HPLC-Q-TOF/MS. Among them, 60 compounds were included in the databases. 116 targets were obtained for the compounds, and 41 genes were related to thermogenesis. The network results revealed that 27 active ingredients and 39 target genes. Through the KEGG analysis, the top 3 pathways were PPAR signaling pathway, AMPK signaling pathway, thermogenesis pathway. The thermogenic protein PPARγ, UCP1 and PGC1-α was included in the critical targets of four major compounds. The three major compounds increased the lipid consumption and activated the brown adipocyte. They also upregulated the expression of UCP1, PGC1-α and pHSL, especially 2-methoxycinnamaldehyde was confirmed the effect for the first time. Furthermore, cinnamaldehyde and cinnamon extract activated the expression of TRPA1 on DRG cells. ConclusionThe mechanisms of cinnamon on cold resistance were investigated with network pharmacology and experiment validation. This work provided research direction to support the traditional applications of thermogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.