Abstract

This paper evaluates the statistical methodologies of cluster analysis, discriminant analysis, and Logit analysis used in the examination of intrusion detection data. The research is based on a sample of 1200 random observations for 42 variables of the KDD-99 database, that contains ‘normal’ and ‘bad’ connections. The results indicate that Logit analysis is more effective than cluster or discriminant analysis in intrusion detection. Specifically, according to the Kappa statistic that makes full use of all the information contained in a confusion matrix, Logit analysis ( K = 0.629) has been ranked first, with second discriminant analysis ( K = 0.583), and third cluster analysis ( K = 0.460).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.