Abstract

Cellular stress responses require exquisite coordination between intracellular signaling molecules to integrate multiple stimuli and actuate specific cellular behaviors. Deciphering the web of complex interactions underlying stress responses is a key challenge in understanding robust biological systems and has the potential to lead to the discovery of targeted therapeutics for diseases triggered by dysregulation of stress response pathways. We constructed large-scale molecular interaction maps of six major stress response pathways in Saccharomyces cerevisiae (baker’s or budding yeast). Biological findings from over 900 publications were converted into standardized graphical formats and integrated into a common framework. The maps are posted at http://www.yeast-maps.org/yeast-stress-response/ for browse and curation by the research community. On the basis of these maps, we undertook systematic analyses to unravel the underlying architecture of the networks. A series of network analyses revealed that yeast stress response pathways are organized in bow–tie structures, which have been proposed as universal sub-systems for robust biological regulation. Furthermore, we demonstrated a potential role for complexes in stabilizing the conserved core molecules of bow–tie structures. Specifically, complex-mediated reversible reactions, identified by network motif analyses, appeared to have an important role in buffering the concentration and activity of these core molecules. We propose complex-mediated reactions as a key mechanism mediating robust regulation of the yeast stress response. Thus, our comprehensive molecular interaction maps provide not only an integrated knowledge base, but also a platform for systematic network analyses to elucidate the underlying architecture in complex biological systems.

Highlights

  • Living organisms are constantly affected by diverse internal and external stressors; for example, changes in nutrient and ion concentrations and temperature

  • Comprehensive map characteristics In this study, we first constructed comprehensive yeast stress response maps (Figure 1) to capture biochemical reactions associated with the different biological events comprising stress responses in S. cerevisiae, including the binding of external ligands to specific receptors, signal transmission via kinase cascades, eventual delivery of signals to the cell nucleus, and gene transcriptional regulation

  • Using standardized notations from the Systems Biology Graphical Notation (SBGN) process description diagram,[25] a mechanism-oriented view was included in the maps, capturing details such as state transition, complex formation, intracellular localization, and npj Systems Biology and Applications (2016) 15018

Read more

Summary

INTRODUCTION

Living organisms are constantly affected by diverse internal and external stressors; for example, changes in nutrient and ion concentrations and temperature They respond to such perturbations by orchestrating complex interactions between large numbers of intracellular molecules, including receptors, secondary messengers, modification enzymes, and transcription factors. This response to counteract stress stimuli is conserved throughout biology, from simple unicellular organisms to multicellular animals, and serves to maintain their homeostasis. Bow–tie analyses demonstrated bow–tie structures for yeast stress responses, with a limited number of core molecules integrating multiple upstream signals and distributing these to downstream pathways. We demonstrate a potent network-oriented strategy to elucidate underlying architectures in signaling networks, powered by comprehensive molecular maps

RESULTS
DISCUSSION
MATERIALS AND METHODS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.