Abstract
The infusion of nerve growth factor (NGF) into the lateral ventricle of the mature rat brain elicits a sprouting response from axons associated with the intradural segment of the internal carotid artery. Using electron microscopic techniques, we observed a three-fold increase in the total number of perivascular axons. This NGF-elicited response is characterized by a dramatic reduction in glial cell ensheathment similar to that observed during development and by the presence of profiles devoid of organelles that may represent newly formed sprouts. In spite of the increase in axon number, no significant changes in the percentage of small, medium, or large axons were observed. The three-fold increase in the total number of axons was accompanied by an increase in the number of axons/fascicle but no change in the number of fascicles. This, along with the observation that a majority of sprouted axons were associated with other axons, supports the idea that the sprouted axons tend to associate preferentially with other axons. Bilateral superior cervical ganglionectomies following cytochrome C infusion indicate that approximately 60% of the axons associated with the internal carotid artery arise from the superior cervical ganglion and that the majority of axons contacting the smooth muscle layer arise from this ganglion. Sympathectomy following NGF infusion resulted in a 79% reduction in the total number of perivascular axons, demonstrating overwhelmingly that the majority of sprouted axons are sympathetic fibers. These results demonstrate that infusion of NGF into the mature rat brain results in the preferential sprouting of sympathetic axons associated with the internal carotid artery. These findings are consistent with the hypothesis that NGF normally plays a role in the regulation of autonomic cerebrovascular innervation in the adult animal and that mature, uninjured sympathetic neurons remain responsive to NGF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.