Abstract

The effect of mouse nerve growth factor (NGF) on cultured human fetal sensory neurons was assayed by measuring neurite length, density and rate of growth. Addition of NGF increased adhesion of dissociated sensory neurons cultured on collagen coated surfaces. Almost all neurons of 9 to 10 week old fetuses are postmitotic, contain neuron-specific enolase, (an enzyme linked to differentiation), and require NGF for optimal neurite growth. Sensory ganglia re-explanted on collagen showed maximal neurite length and density when treated with 1 ng/ml of NGF. Neurite density was reduced considerably in the absence of mouse NGF and was almost abolished by addition of antimouse NGF antibodies. Surfaces coated with the matrix glycoproteins laminin or fibronectin further stimulated neurite growth of ganglia in the presence of NGF. Increasing amounts of matrix proteins could partly compensate for the absence of mouse NGF or the inhibition of NGF activity by antibodies. Stimulation of neurite growth by matrix proteins was time-dependent, and neurites showed maximum length at 10 days (2 to 3 mm). Neurite growth was more pronounced with laminin than with fibronectin and collagen, and antibodies to laminin suppressed all neurite growth. In the presence of a constant amount of NGF, mean neurite growth reached 26 microns/hr (at 1 day), and was 2.1 and 1.7 times faster on laminin and fibronectin (respectively) than on collagen. Thus, laminin, and to a lesser degree fibronectin, may enhance neurite growth of human sensory neurons in synergy with NGF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.