Abstract

Understanding the electron-transfer mechanism and kinetic characteristics of bioanodes is greatly significant to enhance the electron-generating efficiencies in bioelectrochemical systems (BESs). A Nernst-ping-pong model is proposed here to investigate the kinetics and biochemical processes of bioanodes in a microbial electrolysis cell. This model can accurately describe the effects of the substrate (including substrate inhibition) and the anode potential on the current of bioanodes. Results show that the half-wave potential positively shifts as the substrate concentration increases, indicating that the rate-determining steps of anodic processes change from substrate oxidation to intracellular electron transport reaction. The anode potential has negligible effects on the enzymatic catalysis of anodic microbes in the range of −0.25V to +0.1V vs. a saturated calomel electrode. It turns out that to reduce the anodic energy loss caused by overpotential, higher substrate concentrations are preferred, if the substrate do not significantly and adversely affect the output current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.