Abstract

Weyl semimetals (WSM) are topologically protected three dimensional materials whose low energy excitations are linearly dispersing massless Dirac fermions, possessing a non-trivial Berry curvature. Using semi-classical Boltzmann dynamics in the relaxation time approximation for a lattice model of time reversal (TR) symmetry broken WSM, we compute both magnetic field dependent and anomalous contributions to the Nernst coefficient. In addition to the magnetic field dependent Nernst response, which is present in both Dirac and Weyl semimetals, we show that, contrary to previous reports, the TR-broken WSM also has an anomalous Nernst response due to a non-vanishing Berry curvature. We also compute the thermal conductivities of a WSM in the Nernst (${\nabla T} \perp \mathbf{B}$) and the longitudinal (${\nabla T} \parallel \mathbf{B}$) set-up and confirm from our lattice model that in the parallel set-up, the Wiedemann-Franz law is violated between the longitudinal thermal and electrical conductivities due to chiral anomaly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.