Abstract

Three highly oxidized hybrid flavonoids neosophoflavonoids A–C (1, 2a, and 2b) were isolated from the roots of Sophora flavescens. Neosophoflavonoid A possesses a unique highly oxidized heptacyclic 6/6/6/6/6/6/5 system. Neosophoflavonoids B and C are isomers and share the same highly oxidized hexacyclic 6/6/6/6/6/6 systems. Their planar structures were elucidated from 1D/2D nuclear magnetic resonance (NMR), ultraviolet spectroscopy (UV), infrared spectroscopy (IR), and high resolution electrospray ionization mass spectroscopy (HRESIMS) data. Their absolute configurations were determined by thorough GIAO 13C NMR (DP4+) calculation protocol and electronic circular dichroism (ECD) calculation method. The plausible biosynthetic routes for the compounds were also proposed. All compounds exhibited significant protein tyrosine phosphatase-1B (PTP1B) inhibitory activity with half maximal inhibitory concentration (IC50) values 3.94 ± 0.01, 0.38 ± 0.13, and 0.70 ± 0.01 µmol/L, respectively. In addition, compared to a positive control fenofibrate (Feno) at 20 µmol/L, compounds 2a and 2b exhibited stronger inhibitory effects on lipid accumulation in the oleic acid (OA)-induced cell model at 5 and 10 µmol/L.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.