Abstract

Studies show that children in rural environments develop less asthma and allergic rhinitis than their urban counterparts. This may be a result, in part, of neonatal exposure to environmental antigens such as LPS and/or early exposure to allergens. This study examined the effects of neonatal allergen and/or LPS exposure on subsequent immune responses to allergen. Newborn mice were exposed to LPS and/or ovalbumin. At age 6 weeks, these animals were sensitized and challenged with ovalbumin, and airway inflammation, hyperresponsiveness, and cytokine expression were assessed. Animals exposed to LPS in the neonatal period developed T cells expressing CD25 and IL-10 on sensitization and challenge. They demonstrated abrogation of airway hyperresponsiveness and significant decreases in IL-13 from bronchoalveolar lavage fluid and in specific IgE. IL-4-expressing spleen cells were also significantly decreased. Mice exposed in the neonatal period to ovalbumin demonstrated airway hyporesponsiveness after subsequent ovalbumin sensitization and challenge and did not produce specific IgE. In contrast, these animals showed increases in IFN-gamma. Animals exposed to both LPS and ovalbumin developed a response characterized by IL-10 and IFN-gamma-expressing T cells. This suggests that mucosal antigen exposure in the neonatal period results in inhibition of allergic responses to environmental allergens. Early LPS exposure directs mucosal responses toward tolerance, whereas ovalbumin exposure follows the T(H)1-type response on subsequent sensitization. This study suggests that prevention of airways allergy may be best achieved by appropriate exposure of the airway mucosa early in life to environmental antigens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.