Abstract
The structure of the neocortex varies across the neocortical mantle to govern the physical size of principal neurons. What impact such anatomical variation has on the computational operations of principal neurons remains unknown. Here, we demonstrate within a functionally defined area that neocortical thickness governs the anatomical, electrophysiological, and computational properties of the principal output neurons of the neocortex. We find that neocortical thickness and the size of layer 5B pyramidal neurons changes as a gradient across the rostro-caudal axis of the rat primary visual cortex. Simultaneous somato-dendritic whole-cell recordings and compartmental modeling revealed that the electrical architecture of principal neurons was not preserved; rather, primary visual cortex site-dependent differences in intracellular resistivity accentuated a gradient of the electrical behavior of layer 5B pyramidal neurons to influence the emergence of active dendritic computations. Our findings therefore reveal an exquisite relationship between neocortical structure and neuronal computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.