Abstract

Since the discovery of ferromagnetic two-dimensional (2D) van der Waals (vdW) crystals, significant interest on such 2D magnets has emerged, inspired by their appealing properties and integration with other 2D family for unique heterostructures. In known 2D magnets, spin-orbit coupling (SOC) stabilizes perpendicular magnetic anisotropy (PMA). Such a strong SOC could also lift the chiral degeneracy, leading to the formation of topological magnetic textures such as skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here, we report the experimental observation of N\'eel-type chiral magnetic skyrmions and their lattice (SkX) formation in a vdW ferromagnet Fe3GeTe2 (FGT). We demonstrate the ability to drive individual skyrmion by short current pulses along a vdW heterostructure, FGT/h-BN, as highly required for any skyrmion-based spintronic device. Using first principle calculations supported by experiments, we unveil the origin of DMI being the interfaces with oxides, which then allows us to engineer vdW heterostructures for desired chiral states. Our finding opens the door to topological spin textures in the 2D vdW magnet and their potential device application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.