Abstract

The rapid spread of the new Coronavirus, COVID-19, causes serious symptoms in humans and can lead to fatality. A COVID-19 infected person can experience a dry cough, muscle pain, headache, fever, sore throat, and mild to moderate respiratory illness, according to a clinical report. A chest X-ray (also known as radiography) or a chest CT scan are more effective imaging techniques for diagnosing lung cancer. Computed Tomography (CT) scan images allow for fast and precise COVID-19 screening. In this paper, a novel hybridized approach based on the Neighborhood Rough Set Classification method (NRSC) and Backpropagation Neural Network (BPN) is proposed to classify COVID and NON-COVID images. The proposed novel classification algorithm is compared with other existing benchmark approaches such as Neighborhood Rough Set, Backpropagation Neural Network, Decision Tree, Random Forest Classifier, Naive Bayes Classifier, K- Nearest Neighbor, and Support Vector Machine. Various classification accuracy measures are used to assess the efficacy of the classification algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.