Abstract

We have carried out 3D Non-Equilibrium Green Function simulations of a junctionless gate-all-around n-type silicon nanowire transistor of 4.2×4.2nm2 cross-section. We model the dopants in a fully atomistic way. The dopant distributions are randomly generated following an average doping concentration of 1020cm−3. Elastic and inelastic phonon scattering is considered in our simulation. Considering the dopants in a discrete way is the first step in the simulation of random dopant variability in junctionless transistors in a fully quantum mechanical way. Our results show that, for devices with an “unlucky” dopants configuration, where there is a starvation of donors under the gate, the threshold voltage can increase by a few hundred mV relative to devices with a more homogeneous distribution of dopants. For the first time we have used a quantum transport model with dissipation to evaluate the change in threshold voltage and subthreshold slope due to the discrete random donors in the channel of a junctionless nanowire nMOS transistor. These calculations require a robust convergence scheme between the quantum transport equation and the Poisson equation in order to achieve convergence in the dopant-induced resonance regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.