Abstract

Negative thixotropy, also called antithixotropy, is the effect of a flow-induced increase in viscosity that has been observed for many polymer solutions. Here, a simple quantitative model describing the time dependence of the shear stress or viscosity is presented. The model assumes a dynamic gel or network in the polymer solution, whose cross-links are dynamically formed and broken. The cross-links exist with or without deformation or flow of the solution. A second property of the model network is that it cannot be deformed infinitely, which is also true for any real network. The dynamic network solution is characterized by four parameters: its elastic shear modulus, its maximum degree of deformation, the rate with which the dynamic cross-links form and break and the viscous contribution of the polymer solution. The first two parameters can be related to each other, so only three independent parameters enter the model. An analytical solution is obtained which describes the flow-induced increase in viscosity, the minimum shear rate required for negative thixotropy and the dependence of the induction time on the shear rate. The results are shown to be in agreement with reported experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.