Abstract

Many factors have been shown to promote myelination, but few have been shown to be inhibitory. Here, we show that polysialylated-neural cell adhesion molecule (PSA-NCAM) can negatively regulate myelin formation. During development, PSA-NCAM is first expressed on all growing fibers; then, axonal expression is down-regulated and myelin deposition occurs only on PSA-NCAM-negative axons. Similarly, in cocultures of oligodendrocytes and neurons, PSA-NCAM expression on axons is initially high, but decreases as myelination proceeds. Importantly, if expression of PSA-NCAM is prematurely decreased in cultures, by either antibody-mediated internalization or enzymatic removal of the PSA moieties with endoneuraminidase N (endo-N), myelination increases 4- to 5-fold. In the optic nerve, premature cleavage of PSA moieties by intravitreous injection of endo-N also induces a transient increase in the number of myelinated internodes, but does not interfere with the onset of myelination. Previously, we showed that axonal electrical activity strongly induced myelination, which could be prevented by tetrodotoxin (TTX), an action potential blocker. Interestingly, removal of PSA moieties does not reverse the inhibition of myelination by TTX. Together, this suggests that myelination is tightly controlled by both positive (electrical activity) and negative (PSA-NCAM expression) regulatory signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.