Abstract

We have theoretically studied the negative refractive behavior and the focusing effect in a two-dimensional square-lattice photonic crystal made of air rods in a dielectric background. Detailed explanations are given for the effect of the negative refraction, and the imaging of the plano-concave lens is shown by the use of a wave vector diagram formalism. The typical negative refractive behavior is demonstrated by considering the Bloch mode with the wave vector inside the first Brillouin zone, because only those wave vectors inside the first Brillouin zone of multiple Brillouin zones have a definite meaning. The single propagating beam is analyzed by the use of the wave vector diagram formalism following the folding of the wave vectors. Good-quality focusing of a plane wave can be realized by using a photonic crystal plano-concave lens, while a plane wave is formed by a point source placed at the focal point. Our results are in good agreement with the experimental ones shown for a negative-index plano-concave lens by Vodo et al. [Appl. Phys. Lett. 86 (2005) 201108]. Finally, we also have shown the focusing behavior of a plane wave and a Gaussian pulse by a plano-concave lens structure with high-index modulation instead of air in the concave region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.