Abstract

Antiferromagnetic topological insulators have attracted great attention in the condensed matter physics owing to the fundamental interest in exotic quantum states and topological antiferromagnetic spintronics. Starting with the typical topological insulator of Bi2Te3, we introduced the magnetic order by substituting Gd at the Bi site and tuned the Fermi level by substituting Se at the Te site. That is, we prepared single crystals of GdxBi2−xTe3−ySey with various x (= 0.02 and 0.06) and y (= 0.1, 0.2, 0.5, 0.7, 1.0, and 1.5). The magnetic data revealed an antiferromagnetic order for x = 0.06, and the transport data manifested the charge neutral point at y = 0.7. Combining all these results together, the material with x = 0.06 and y = 0.7 is characterized as an antiferromagnetic topological insulator, where we observed exotic magnetotransport properties such as weak antilocalization and negative longitudinal magnetoresistance that are frequently analyzed as chiral anomalies in Weyl materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.