Abstract
Negative ion photoelectron (NIPE) spectra, with 193, 266, 300, and 355 nm photons, of the radical anion of 1,8-naphthoquinone (1,8-NQ•-) have been obtained at 20 K. The electron affinity of 1,8-NQ is determined from the first resolved peak in the NIPE spectrum to be 2.965 ± 0.005 eV. Franck-Condon factors (FCFs), calculated from the CASPT2/aug-cc-pVDZ optimized geometries, normal modes, and vibrational frequencies, successfully simulate the intensity and frequencies of the spectral features that are associated with the lowest two electronic states. The NIPE spectra of 1,8-NQ•- and the peak assignments, based on the computed FCFs, confirm the theoretical predictions that 1A1 is the ground state of 1,8-NQ and 3B2 is the first excited state. The spectra provide an experimental value of Δ EST = -0.6 kcal/mol, which is 2 kcal/mol smaller in magnitude than the (12/12)CASPT2/aug-cc-pVTZ calculated value of Δ EST = -2.6 kcal/mol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.