Abstract
Mutational activation of growth factor signaling pathways is commonly observed and often necessary for oncogenic transformation. Under physiologic conditions, these pathways are subject to tight regulation through negative feedback, which limits the extent and duration of signaling events after physiologic stimulation. Until recently, the role of these negative feedback pathways in oncogene-driven cancers has been poorly understood. In this review, I discuss the evidence for the existence and relevance of negative feedback pathways within oncogenic signaling networks, the selective advantages such feedback pathways may confer, and the effects such feedback might have on therapies aimed at inhibiting oncogenic signaling. Negative feedback pathways are ubiquitous features of growth factor signaling networks. Because growth factor signaling networks play essential roles in the majority of cancers, their therapeutic targeting has become a major emphasis of clinical oncology. Drugs targeting these networks are predicted to inhibit the pathway but also to relieve the negative feedback. This loss of negative feedback can itself promote oncogenic signals and cancer cell survival. Drug-induced relief of feedback may be viewed as one of the major consequences of targeted therapy and a key contributor to therapeutic resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.