Abstract

Saccharides (mono through hexasaccharides) that mimic the terminal epitopes of O-antigens of Vibrio cholerae O:1, serotypes Ogawa and Inaba, were studied by electrospray ion trap (ESI IT) mass spectrometry (MS) in the negative mode. Anionized adducts are the characteristic ions formed by the capture of H(3)O(2)(-) under the condition of ESI MS analysis. The reactive species are produced by reaction of hydroxyl anions with the molecule of water. Thus the [M + H(3)O(2)](-) have the highest m/z value in the ESI IT negative mass spectra. After dissociation of adducts by loss of 2H(2)O the [M-H](-) ions are produced. The fragmentation pathways were confirmed by multistage measurements (MS(n)). The predominant pathway of fragmentation of the mono- and oligomers is the elimination of a molecule of alpha- hydroxy--gammabutyrolactone from the 4-(3-deoxy-L-glycero-tetronamido) group. The other characteristic pathway occurs by shortening the length of oligosaccharides. In this way, conversion of the Ogawa to Inaba fragments takes place under the conditions of measurement. Negative ESI MS/MS provided sufficient information about molecular mass, the number of saccharide residues, basic structure of saccharides, about the tetronamide part of the compounds investigated and allowed Ogawa and Inaba serotypes to be distinguished.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.