Abstract

This study was presented the development of the needle trap device (NTD) packed with the MIL-100(Fe) metal–organic framework (MOF) for extraction of organochlorine pesticides (Hexachlorobenzene, Aldrin, Alpha-Chlordane, Dildrin and DDT isomers) from the air environment for the first time. Specifications of synthesized MIL-100(Fe) were identified by Fourier-transfer infrared spectroscopy (FT-IR), X-ray Diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS) and elemental mapping techniques. The optimization of sampling and desorption parameters such as humidity, time, and temperature were performed by response surface methodology (RSM). Sampling and analysis of organochlorine pesticides were accomplished under different conditions in the laboratory scale and then was employed in the field study for the real air samples. The highest response was obtained at desorption temperature of 280 °C and desorption time of 5 min. The temperature and humidity of the sampling site were set to 30 °C and 25%. Furthermore, the Limit of Detection (LOD) and Limit of Quantification (LOQ) for the targeted analytes were determined in the range of 0.04–0.41 µg/m3 and 0.21–1.82 µg/m3, respectively. Moreover, from the recovery standpoint, any significant change was not detected on the analytes after 6 days of storage at 4 °C. Also, the results of this study showed a high correlation (R2 = 0.9882) between the results of the proposed method with the standard NIOSH method. This study exhibited that the proposed MIL-100(Fe)@NTD method can be employed as an eco-friendly, reliable, sensitive, and efficient procedure for sampling and determination of the organochlorine pesticides compared to the standard NIOSH method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.