Abstract

To provide unencumbered real-time ultrasound image guidance during robot-assisted laparoscopic radical prostatectomy, we developed a robotic transrectal ultrasound system that tracks the da Vinci® Surgical System instruments. We describe our initial clinical experience with this system.After an evaluation in a canine model, 20 patients were enrolled in the study. During each procedure the transrectal ultrasound transducer was manually positioned using a brachytherapy stabilizer to provide good imaging of the prostate. Then the transrectal ultrasound was registered to the da Vinci robot by a previously validated procedure. Finally, automatic rotation of the transrectal ultrasound was enabled such that the transrectal ultrasound imaging plane safely tracked the tip of the da Vinci instrument controlled by the surgeon, while real-time transrectal ultrasound images were relayed to the surgeon at the da Vinci console. Tracking was activated during all critical stages of the surgery.The transrectal ultrasound robot was easy to set up and use, adding 7 minutes (range 5 to 14) to the procedure. It did not require an assistant or additional control devices. Qualitative feedback was acquired from the surgeons, who found transrectal ultrasound useful in identifying the urethra while passing the dorsal venous complex suture, defining the prostate-bladder interface during bladder neck dissection, identifying the seminal vesicles and their location with respect to the rectal wall, and identifying the distal prostate boundary at the apex.Real-time, registered robotic transrectal ultrasound guidance with automatic instrument tracking during robot-assisted laparoscopic radical prostatectomy is feasible and potentially useful. The results justify further studies to establish whether the approach can improve procedure outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.