Abstract
The relationship between sucrose concentration of nectar and volume uptake rate by the butterflies Agraulis vanillae (Nymphalidae) and Phoebis sennae (Pieridae) was examined. Recent theoretical models simulating feeding energetics of nectarivores have assumed that this volume uptake rate is produced by a constant but undetermined pressure drop (the difference between pressure at the proximal and distal ends of the feeding channel) at all nectar concentrations. These models predict that nectar of 20-25% sucrose maximizes the rate of energy intake and should thus be preferred by nectarivores. Data collected for Agraulis and Phoebis falsify this pressure drop assumption; both species produce greater pressure drops with increasing nectar concentration. In addition, males of both species produce greater suction pressure and uptake rates than females. This results in greater rates of energy intake for males of both species. The volume uptake rates produced by each species differ from those predicted by the models. This produces a maximal rate of energy intake at 35-40% sucrose rather than 20-25%. The empirically determined relationship between energy intake rate and nectar concentration esembles that predicted for discontinuous nectar feeders such as hummingbirds more closely than the relationship predicted for continuous suction feeders, suggesting that other basic assumptions about the feeding mechanism of butterflies should be critically examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.