Abstract

Photodynamic therapy (PDT) is an approved anticancer treatment modality that eliminates unwanted cells by the photochemical generation of reactive oxygen species following absorption of visible light by a photosensitizer, which is selectively taken up by tumor cells. Present study reports the modalities of cell death after photosensitization of human adenocarcinoma HT29 monolayer and spheroid cells with a second generation photosensitizer Foscan ®. Kinetics of apoptosis and necrosis after Foscan ®-PDT in monolayer cells determined by flow cytometry using labeling of cleaved poly(ADP-ribose) polymerase (PARP) and staining with propidium iodide (PI) demonstrated that Foscan ® was not a strong inducer of apoptosis and necrosis was a prevailing mode of cell death. Cytochrome c release (cyt c) and mitochondrial membrane potential (Δ ψ m) addressed by flow cytometry technique at different time points post-Foscan ®-PDT demonstrated that cell photoinactivation was governed by these mitochondrial events. Foscan ®-loaded HT29 multicell spheroids, subjected to irradiation with different fluence rates and equivalent light doses, displayed much better tumoricidal activity at the lowest fluence rate used. Apoptosis, measured by caspase-3 activation was evidenced only in spheroids irradiated with the lowest fluence rate and moderate fluence inducing 65% of cell death. Application of higher fluence rates for the same level of photocytotoxicity did not result in caspase-3 activation. The observation of the fluence rate-dependent modulation of caspase-3 activity in spheroids offers the possibility of regulating the mechanism of direct cell photodamage and could be of great potential in the clinical context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.