Abstract
It is still not known if the radial cavitating minimizers obtained by Ball [J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Phil. Trans. R. Soc. Lond. A 306 (1982) 557–611] (and subsequently by many others) are global minimizers of any physically reasonable nonlinearly elastic energy. We therefore consider in this paper the related problem of obtaining necessary conditions for these radial solutions to be minimizers with respect to nonradial perturbations. A standard blowup argument applied to either an inner or an outer variation yields an apparently new inequality that, for most constitutive relations, has yet to be verified. However, in the special case of a compressible neo-Hookean material, W(F)=μ2|F|2+h(detF), we show that the inequality produced by an outer variation clearly holds whilst that produced by an inner variation is a well-known inequality (first proven by Brezis, Coron, and Lieb [H. Brezis, J.-M. Coron, E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986) 649–705] ) which arises in the theory of nematic liquid crystals:∫B|∇n(x)|2dx⩾∫B|∇(x|x|)|2dx=8π for all n∈W1,2(B,∂B) (so that |n|=1 a.e.) that satisfy n(x)=x/|x| on ∂B, where B is the unit ball in R3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.