Abstract
Near-resonance highly nonlinear ideal perfect gas oscillations in tubes are studied numerically for boundary conditions of various types. The oscillations are initiated by weak periodic perturbations at one end of the tube. As distinct from earlier studies [1–10], the oscillation amplitudes were not assumed to be small and the entropy increase at the shock waves formed was taken into account. Periodic flow regimes result as a limit of the solution of a Cauchy problem for one-dimensional time-dependent gasdynamic equations. The frequency responses of the oscillations under consideration are determined for boundary conditions of various types. It is shown that in specific cases the attainment of a periodic regime is accompanied by the appearance of long-wave modulations. The “repeated resonance” effect is revealed. This is due to the change in the tube's natural acoustic frequency, which takes place during the heating of the gas in the tube by the shock waves traveling in it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.