Abstract

We present a grid of near-infrared (IR) synthetic images of pre-main-sequence stars at different stages of evolution, which we simulate by varying envelope mass, disk radius and mass, and outflow cavity shape. Our aim is to determine how variations in physical properties of young stellar objects (e.g., mass infall rate, disk size) affect their observed colors and morphology, and use this information to highlight observable differences between different evolutionary states. We show that the near-IR colors are a function of envelope mass infall rate and inclination; hence both parameters must be constrained if colors are to be used to infer a source's true evolutionary state. Sources with more opaque envelopes have redder diffuse colors, because the scattered light suffers reddening as it propagates through the envelope. Somewhat counterintuitively, colors are reddest at intermediate inclinations (i ~ 45°-70°) and then become bluer edge-on, where light is ~100% scattered. Thus a source with relatively blue colors could be an evolved source or a younger source oriented edge-on. Importantly, we find that at inclinations where scattered light dominates, it is erroneous to derive extinction A_V from observed colors; fully half of all objects will underestimate A_V by at least an order of magnitude. We use our models to interpret six protostellar sources in the Taurus-Auriga molecular cloud observed with HST NICMOS. Of the six young stellar objects modeled in this paper, five require an infalling envelope to match the colors and should thus be classified as young embedded sources. The remaining source, Haro 6-5B, is a disk source, having already dispersed its envelope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.