Abstract

Near-field mapping has been widely used to study hyperbolic phonon-polaritons in van der Waals crystals. However, an accurate measurement of the polaritonic loss remains challenging because of the inherent complexity of the near-field signal and the substrate-mediated loss. Here we demonstrate that large-area monocrystalline gold flakes, an atomically flat low-loss substrate for image polaritons, provide a platform for precise near-field measurement of the complex propagation constant of polaritons in van der Waals crystals. As a topical example, we measure propagation loss of the image phonon-polaritons in hexagonal boron nitride, revealing that their normalized propagation length exhibits a parabolic spectral dependency. Furthermore, we show that image phonon-polaritons exhibit up to a twice longer normalized propagation length, while being 2.4 times more compressed compared to the case of the dielectric substrate. We conclude that the monocrystalline gold flakes provide a unique nanophotonic platform for probing and exploitation of the image modes in low-dimensional materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.