Abstract
Hugoniot measurements were performed on aluminum (6061-T6) in the stress range of 100–500 GPa (1–5 Mbar) using a magnetically accelerated flyer plate technique. This method of flyer plate launch utilizes the high currents, and resulting magnetic fields produced at the Sandia Z Accelerator to accelerate macroscopic aluminum flyer plates (approximately 12×25 mm in lateral dimension and ∼300 μm in thickness) to velocities in excess of 20 km/s. This technique was used to perform plate-impact shock-wave experiments on aluminum to determine the high-stress equation of state (EOS). Using a near-symmetric impact method, Hugoniot measurements were obtained in the stress range of 100–500 GPa. The results of these experiments are in excellent agreement with previously reported Hugoniot measurements of aluminum in this stress range. The agreement at lower stress, where highly accurate gas gun data exist, establishes the magnetically accelerated flyer plate technique as a suitable method for generating EOS data. Furthermore, the present results exhibit increased accuracy over the previous techniques used to obtain data in the higher-stress range. This improved accuracy enhances our understanding of the response of aluminum to 500 GPa, and lends increased confidence to the use of aluminum as a standard material in future impedance matching experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.