Abstract
The tyrosyl circular dichroism (CD) has been calculated using the conformation of pig insulin observed in rhombohedral crystals containing 2 zinc atoms per hexamer. These calculations predict that the tyrosyl CD at 275 nm will be enhanced disproportionally as monomers interact to form dimers and as dimers interact to form hexamers. This enhanced tyrosyl CD (delta epsilon per 5800 molecular weight) results from new coupling interactions generated in the regions of contact between monomers and between dimers. These calculations illustrate that a large CD enhancement may accompany aggregation even in the absence of a conformation change in eith monomer. The tyrosyl CD intensities calculated for monomers, dimers, and hexamers of 2-zinc pig insulin are compatible with the experimentally observed CD spectra which are enhanced about fourfold in the hexamer compared with the monomer. Zinc ions and other metals do not contribute directly to the tyrosyl CD but only influence the optical properties by promoting the hexameric state. The relation of the integrity of the molecule to dimer formation and the biological activity of the molecules are discussed. The largest calculated contributions to tryosyl CD arise from interactions with far-ultraviolet transitions of neighboring aromatic groups. In the hexamer, about half of the tyrosyl CD intensity is calculated to arise from Tyr-A14.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.