Abstract

AbstractMagnetoelectric coupling is achieved near room temperature in a spin crossover FeII molecule‐based compound, [Fe(1bpp)2](BF4)2. Large atomic displacements resulting from Jahn–Teller distortions induce a change in the molecule dipole moment when switching between high‐spin and low‐spin states leading to a step‐wise change in the electric polarization and dielectric constant. For temperatures in the region of bistability, the changes in magnetic and electrical properties are induced with a remarkably low magnetic field of 3 T. This result represents a successful expansion of magnetoelectric spin crossovers towards ambient conditions. Moreover, the observed 0.3–0.4 mC m−2 changes in the H‐induced electric polarization suggest that the high strength of the coupling obtained via this route is accessible not just at cryogenic temperatures but also near room temperature, a feature that is especially appealing in the light of practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.