Abstract
Computational models of cholera transmission can provide objective insights into the course of an ongoing epidemic and aid decision making on allocation of health care resources. However, models are typically designed, calibrated and interpreted post-hoc. Here, we report the efforts of a team from academia, field research and humanitarian organizations to model in near real-time the Haitian cholera outbreak after Hurricane Matthew in October 2016, to assess risk and to quantitatively estimate the efficacy of a then ongoing vaccination campaign. A rainfall-driven, spatially-explicit meta-community model of cholera transmission was coupled to a data assimilation scheme for computing short-term projections of the epidemic in near real-time. The model was used to forecast cholera incidence for the months after the passage of the hurricane (October-December 2016) and to predict the impact of a planned oral cholera vaccination campaign. Our first projection, from October 29 to December 31, predicted the highest incidence in the departments of Grande Anse and Sud, accounting for about 45% of the total cases in Haiti. The projection included a second peak in cholera incidence in early December largely driven by heavy rainfall forecasts, confirming the urgency for rapid intervention. A second projection (from November 12 to December 31) used updated rainfall forecasts to estimate that 835 cases would be averted by vaccinations in Grande Anse (90% Prediction Interval [PI] 476-1284) and 995 in Sud (90% PI 508-2043). The experience gained by this modeling effort shows that state-of-the-art computational modeling and data-assimilation methods can produce informative near real-time projections of cholera incidence. Collaboration among modelers and field epidemiologists is indispensable to gain fast access to field data and to translate model results into operational recommendations for emergency management during an outbreak. Future efforts should thus draw together multi-disciplinary teams to ensure model outputs are appropriately based, interpreted and communicated.
Highlights
A major cholera epidemic has ravaged Haiti since October 2010 with more than 800,000 reported cases and close to 10,000 reported deaths as of December 2017
Following the passage of Hurricane Matthew on cholera-struck Haiti in October 2016, a large oral cholera vaccine campaign targeting approximately 760,000 individuals was planned to minimize the risk of cholera transmission after the heavy hurricane rainfall
We accounted for different forecasts of precipitation patterns, a well known risk factor for the amplification of cholera epidemics, and reported near real-time projections of cholera cases for November and December 2016 to a group of epidemiologists and field researchers of Medecins Sans Frontières
Summary
A major cholera epidemic has ravaged Haiti since October 2010 with more than 800,000 reported cases and close to 10,000 reported deaths as of December 2017 (http://mspp.gouv.ht). The drastic worsening of sanitary conditions [2,3,4] and the reduced accessibility to safe water caused by the devastating winds and the heavy rainfall brought by Matthew created favorable conditions for the rapid transmission of cholera. Intervention strategies included a collaboration among 30 partners to support DINEPA (Direction National de l’Eau Potable et de l’Assainissment) in providing safe water, sanitation and hygiene promotion in shelters, residential centers and medical facilities of 40 communes [6], mainly through WASH campaigns. In parallel to these activities, MSPP planned a large vaccination campaign in the communes most affected by the hurricane
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.